首页> 外文OA文献 >High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump-probe reflectivity measurements
【2h】

High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump-probe reflectivity measurements

机译:飞秒泵浦-探针光谱反射率光谱研究氢化纳米晶硅中光激发载流子的高频电导率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump-probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820nm, whereas the probe wavelength spanned 770 to 810nm. The pump fluence was fixed at 0.6mJ/cm2. We show that at a fixed delay time of 300fs, the conductivity of the excited electron-hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell-Boltzmann distribution, while Fermi-Dirac statics is not suitable. This is corroborated by values retrieved from pump-probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas.
机译:我们报告了对光激发电荷载流子的高频电导率的研究,该电导率远未与晶格平衡。研究的样品由氢化纳米晶体硅膜组成,该膜生长在硅基板顶部的氧化硅薄膜上。为了进行调查,我们使用了光学飞秒泵浦探针设置来测量探测光束的反射率变化。泵浦光束的波长在580至820nm之间,而探头波长在770至810nm之间。泵注量固定为0.6mJ / cm2。我们表明,在固定的300fs延迟时间下,通过在Maxwell-Boltzmann分布中发现的热载流子气体的经典电导率模型很好地描述了被激发的电子-空穴等离子体的电导率,而费米-狄拉克静力学则不合适。从电导率及其对激发波长和载流子温度的依赖性的泵浦探针反射率测量中获取的值证实了这一点。如对于非简并的载流子气体所预期的,电导率作为激发波长的函数单调降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号